博客
关于我
POJ - 1328 Radar Installation 贪心
阅读量:425 次
发布时间:2019-03-06

本文共 2488 字,大约阅读时间需要 8 分钟。

Radar Installation
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 96177   Accepted: 21378

Description

Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.

We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.

Figure A Sample Input of Radar Installations


Input

The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.

The input is terminated by a line containing pair of zeros

Output

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

Sample Input

3 21 2-3 12 11 20 20 0

Sample Output

Case 1: 2Case 2: 1

Source

可将点的坐标转为在x轴上对应的位置,然后根据右端对应的值进行排序判断。

#include<cstdio>#include<algorithm>#include<cmath>using namespace std;struct pos{	double left,right;};bool flag;bool compare(pos a, pos b){	return a.right < b.right;}int main(){	int n;	double d;	int m = 1;	pos a[1005];	while (~scanf("%d %lf", &n, &d))	{		if (!n || !d)		{			break;		}		int sum = 1;		flag = true;		double x, y;		for (int i = 0; i<n; i++)		{			scanf("%lf %lf", &x, &y);			if (!flag)			{				continue;			}			if (y > d)			{				flag = false;				continue;			}			a[i].left = x - sqrt(d*d - y*y);			a[i].right = x + sqrt(d*d - y*y);		}				if (!flag)		{			printf("Case %d: -1\n",m);			m++;			continue;		}		sort(a, a + n,compare);		double temp = a[0].right;		for (int i = 1; i < n; i++)		{			if (temp<a[i].left)			{				sum++;				temp = a[i].right;			}		}		printf("Case %d: %d\n", m,sum);		m++;	}	return 0;}





转载地址:http://wuwuz.baihongyu.com/

你可能感兴趣的文章
mysql 敲错命令 想取消怎么办?
查看>>
Mysql 整形列的字节与存储范围
查看>>
mysql 断电数据损坏,无法启动
查看>>
MySQL 日期时间类型的选择
查看>>
Mysql 时间操作(当天,昨天,7天,30天,半年,全年,季度)
查看>>
MySQL 是如何加锁的?
查看>>
MySQL 是怎样运行的 - InnoDB数据页结构
查看>>
mysql 更新子表_mysql 在update中实现子查询的方式
查看>>
MySQL 有什么优点?
查看>>
mysql 权限整理记录
查看>>
mysql 权限登录问题:ERROR 1045 (28000): Access denied for user ‘root‘@‘localhost‘ (using password: YES)
查看>>
MYSQL 查看最大连接数和修改最大连接数
查看>>
MySQL 查看有哪些表
查看>>
mysql 查看锁_阿里/美团/字节面试官必问的Mysql锁机制,你真的明白吗
查看>>
MySql 查询以逗号分隔的字符串的方法(正则)
查看>>
MySQL 查询优化:提速查询效率的13大秘籍(避免使用SELECT 、分页查询的优化、合理使用连接、子查询的优化)(上)
查看>>
mysql 查询,正数降序排序,负数升序排序
查看>>
MySQL 树形结构 根据指定节点 获取其下属的所有子节点(包含路径上的枝干节点和叶子节点)...
查看>>
mysql 死锁 Deadlock found when trying to get lock; try restarting transaction
查看>>
mysql 死锁(先delete 后insert)日志分析
查看>>