博客
关于我
POJ - 1328 Radar Installation 贪心
阅读量:425 次
发布时间:2019-03-06

本文共 2488 字,大约阅读时间需要 8 分钟。

Radar Installation
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 96177   Accepted: 21378

Description

Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.

We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.

Figure A Sample Input of Radar Installations


Input

The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.

The input is terminated by a line containing pair of zeros

Output

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

Sample Input

3 21 2-3 12 11 20 20 0

Sample Output

Case 1: 2Case 2: 1

Source

可将点的坐标转为在x轴上对应的位置,然后根据右端对应的值进行排序判断。

#include<cstdio>#include<algorithm>#include<cmath>using namespace std;struct pos{	double left,right;};bool flag;bool compare(pos a, pos b){	return a.right < b.right;}int main(){	int n;	double d;	int m = 1;	pos a[1005];	while (~scanf("%d %lf", &n, &d))	{		if (!n || !d)		{			break;		}		int sum = 1;		flag = true;		double x, y;		for (int i = 0; i<n; i++)		{			scanf("%lf %lf", &x, &y);			if (!flag)			{				continue;			}			if (y > d)			{				flag = false;				continue;			}			a[i].left = x - sqrt(d*d - y*y);			a[i].right = x + sqrt(d*d - y*y);		}				if (!flag)		{			printf("Case %d: -1\n",m);			m++;			continue;		}		sort(a, a + n,compare);		double temp = a[0].right;		for (int i = 1; i < n; i++)		{			if (temp<a[i].left)			{				sum++;				temp = a[i].right;			}		}		printf("Case %d: %d\n", m,sum);		m++;	}	return 0;}





转载地址:http://wuwuz.baihongyu.com/

你可能感兴趣的文章
Mysql 分页
查看>>
Mysql 分页语句 Limit原理
查看>>
MySQL 创建新用户及授予权限的完整流程
查看>>
mysql 创建表,不能包含关键字values 以及 表id自增问题
查看>>
mysql 删除日志文件详解
查看>>
mysql 判断表字段是否存在,然后修改
查看>>
mysql 协议的退出命令包及解析
查看>>
mysql 取表中分组之后最新一条数据 分组最新数据 分组取最新数据 分组数据 获取每个分类的最新数据
查看>>
mysql 多个表关联查询查询时间长的问题
查看>>
mySQL 多个表求多个count
查看>>
mysql 多字段删除重复数据,保留最小id数据
查看>>
MySQL 多表联合查询:UNION 和 JOIN 分析
查看>>
MySQL 大数据量快速插入方法和语句优化
查看>>
mysql 如何给SQL添加索引
查看>>
mysql 字段区分大小写
查看>>
mysql 字段合并问题(group_concat)
查看>>
mysql 字段类型类型
查看>>
MySQL 字符串截取函数,字段截取,字符串截取
查看>>
MySQL 存储引擎
查看>>
mysql 存储过程 注入_mysql 视图 事务 存储过程 SQL注入
查看>>